

Ultra Low Viscosity Epoxy System

RS-M135

Hardeners RS-MH134 & RS-MH137 for RTM & vacuum infusion processes

Applications

- Boats and Shipbuilding
- Wind Energy Turbine Blades
- Sports Equipment

Processing Methods

- Injection moulding (RTM)
- Vacuum Infusion
- Pultrusion

TDS012

PRF Composite Materials 3 Upton Road, Poole, Dorset BH17 7AA, England • t: +44 (0) 1202 680022 • f: +44 (0) 1202 680077 • e: enquiries@prfcomposites.com www.prfcomposites.com

Main Features

Operational Temperature

- -60°C \rightarrow + 50 60°C without postcure
- -60°C \rightarrow + 80°C after postcure

Processing

- Between 10°C and 50°C
- Pot life from ca. 45 minutes to ca. 4 hours at 25°C

Processing methods

- Injection moulding (RTM)
- Vacuum Infusion
- Pultrusion

Other features

- Good physiological properties
- Very good mechanical properties
- Very low viscosity
- Excellent initial cure at room temperature

Introduction

This product is an ultra low viscosity laminating system formulated for use in the manufacture of composite components from glass, carbon and aramid fibres. The system is suitable for components requiring high static and fatigue strength properties using injectin moulding (e.g. RTM), vacuum infusion and pultrusion processes. At 25°C the mixed viscosity is approximately 200 mPa s and may be lowered further to a value of 100 - 150 mPa s by warming the resin (see page 5), thus even complicated parts with long flow paths can be injected without difficulty. With a mould temperature of around 30°C, the temperature rise with hardener RS-MH137 remains very slight, allowing thicker parts to be built at elevated temperatures.

There are 2 hardeners varying in reactivity, with pot lives from 20-30 minutes up to 4 hours. The individual hardeners can be inter-mixed in any ratio, enabling users to optimise the pot life of the system to meet their individual requirements. Cured parts can be worked and demoulded after curing at room temperature. Due to the low vapour pressure of the raw materials, this system can be processed at the elevated temperatures (80 - 100°C) using vacuum processes for example, vacuum assisted RTM. However the maximum temperature will depend on the layer thickness and the geometry of the component part.

Adding an internal parting agent, e.g. zinc stearate, has proven useful for pultrusion processes where profiles with good surface finishes have been produced. Depending on the profile geometry, mould temperatures in the range of 180 - 230°C are possible, thus permitting higher drawing speeds.

It is not expected that there should be compatibility problems with fully cured, dry UP gelcoats or various paint systems (e.g. PUR-based), etc. However, comprehensive tests should be carried out first to confirm this.

The resin and hardeners in this system contain neither solvents nor fillers. Careful selection of raw materials has ensured this system is low in odour and has good physiological properties, minimising skin irritation and allergy problems. However, the appropriate safety advice regarding contact with, and processing of, epoxy resin system should be followed.

Product Specification

Resin	RS-M135
Density at 25°C (g/cm ³)	1.13 - 1.17
Viscosity at 25°C (mPa s)	700 - 1100
Epoxide equivalent	166 - 185
Epoxide value	0.54 - 0.60
Colour / Gardner	max. 3

Hardeners	RS-MH134	RS-MH137
Density at 25°C (g/cm ³)	0.94 - 1.00	0.94 - 0.98
Viscosity at 25°c (mPa s)	10 - 50	10 - 50
Amine value (mgKOH/g)	550 - 700	400 - 450
Colour / Gardner	max. 4*	max. 4*

* Does not apply to standard hardeners which are coloured blue.

Storage

The hardeners can be stored for a minimum of 12 month in original, sealed containers at 15 - 25°C. Crystallisation of these materials may occur at temperatures below 15°C and is visible as a clouding or solidification of the liquid within the container. Before processing, the crystallisation must be removed. This can be done, without any degradation to the product, by slowly warming the material to approximately 50 - 60°C in a water bath or oven and stirring or mixing until the liquid becomes clear.

CAUTION

- · Do not heat over a naked flame;
- Before warming, open containers to equalise pressure;
- Use safety equipment (gloves, safety glasses, respirator);
- Work in a well ventilated area.

Processing Data

	Resin Hardeners		eners
	RS-M135	RS-MH134	RS-MH137
Average Epoxide Value	0.56	-	-
Amine Equivalent	-	52	52
Processing Temperature		10° - 15°C	
Mixed viscosity at 25°C		See diagram	
Setting Temperature	Initial cure at	t room temperatu	re (20 - 25°C)
Heat Treatment	At tempe	ratures between 4	40 - 150°C

The optimum processing temperature is between 20°C and 25°C. Higher processing temperatures will reduce the mixed viscosity and shorten the pot life, a rise of 10°C will halve the pot life. Further, water contained in fillers for example, or very high relative humidity will accelerate the reaction of the resin-hardener mixture. However, there is no significant effect to the strength of the cured product as a result of different temperatures and relative humidity levels during processing.

The mixed viscosity is very low, which is especially advantageous for injection and pultrusion methods. By heating the resin mass, the viscosity can be reduced further to approximately 150 mPa s at 46°C (see diagram), enabling complicated moulded parts with long flow paths to be easily injected. The temperature rise with hardener RS-MH137 remains very low up to a mould temperature of approximately 30°C, so that even parts with thicker layers can be produced at elevated temperatures.

Mixing Ratios

	RS-M135 : RS-MH134 ~ RS-MH137
Parts by Weight	100 : 30 (+/-1)
Parts by Volume	100: 35 (+/-1)

The specified mixing ratios must be observed; varying the quantity of hardener will adversely affect the properties of the matrix. The resin and hardener must be mixed thoroughly until they are homogeneously mixed, paying special attention to the walls and the bottom of the mixing container. Do not mix large quantities, especially if highly reactive systems are being used. Heat dissipation from mixing containers is poor, causing the resinhardener mixture to warm up quickly as a result of the exothermic reaction of the two materials. Temperatures >200°C can be generated causing smoke-intensive burning of the resinhardener mixture. To avoid this, mix small quantities in large, shallow containers.

Mixed Ratios <-> Glass Transition Temperature

Parts by weight of hardener RS-MH137 to 100 parts by weight of laminating resin RS-M135. Heat treatment 80°C.

Processing Time (Pot Life) 100g / 25°C

	Resin RS-M135	
Hardener	RS-MH134	RS-MH137
	ca. 20 - 30 min	3 - 4 hrs

The individual hardeners can be inter-mixed in any ratio, enabling users to optimise the pot life of the system to meet their individual requirements.

For example:

70% RS-MH137 / 30% RS-MH134 will provide a pot life of ca. 2 hours, as shown below.

Resin Matrix Properties Glass Transition Temperature (Tg)

Resin RS-M135 / Hardener RS-MH137

Shear Modulus

Resin: RS-M135 Hardener: RS-MH137

Initial cure 24hr @ 20 - 25°C

Post cure

Cured - Un-reinforced Matrix Properties

CURING : 24h @ 23°C + 15h @ 60°C		RS - M135 & RS-MH134 / RS-MH137
Density	g/cm³	1.18 - 1.20
Flexural strength	N/mm²	110 - 140
Tensile strength	N/mm²	70 - 80
Impact Strength	Nmm/mm ²	40 - 50
Elongation	%	5 - 6.5
Compression strength	N/mm ²	120 - 140
Modulus of elasticity	kN/mm²	3.3 - 3.5
24 hours / 23°C	%	0.10 - 0.20
7 days / 23°C		0.20 - 0.50
Shore Hardness	D	80 - 85
Fatigue under reverse bending stresses acc. DLR Brunswick	10% 90%	> 1 x 10 ⁶ > 2 x 10 ⁶

Representative data in accordance with WL 5.3203 parts 1 & 2 of the German Aviation Materials Manual, part II

Composite Properties Cured - Fibre Reinforced Properties

CURING: 24h @ 25°C + 15h @ 60°C		V _f 43%	RS - M135 & RS-MH134 / RS-MH137
Flexural strength	N/mm²	GFC	510 - 560
		CFC	720 - 770
		AFC	350 - 380
Tensile strength	N/mm²	GFC	460 - 500
		CFC	510 - 550
		AFC	400 - 480
Compressive strength	N/mm²	GFC	410 - 440
		CFC	460 - 510
		AFC	140 - 160
Interlaminar shear strength	N/mm²	GFC	42 - 46
		CFC	47 - 55
		AFC	29 - 34
Flexural modulus	kN/mm²	GFC	20 - 24
		CFC	40 - 45
		AFC	16 - 19

GFC - samples: 16 layers, glass fabric, 296g/m² 8H Satin, 4mm thick.

CFC - samples: 8 layers, SM, 3K carbon fabric, 200g/m² plain weave, 2mm thick.

AFC - samples: 15 layers, Kevlar[®] aramid fabric, 170g/m² 4H Satin, 4mm thick.

Fibre volume fraction of samples 40%-45%. Data calculated to fibre volume 43%.

Kevlar[®] is a DuPont registered trademark.

Health and Safety - Refer to the full Material Safety Datasheet before use.

Find out what PRF can do for your business

Make an enquiry today at: t: +44 (0) 1202 680022 e: enquiries@prfcomposites.com www.prfcomposites.com

PRF Composite Materials

3 Upton Road Poole Dorset BH17 7AA

Important Notice

All statements, technical information and recommendations offered are only for consideration and evaluation. Whilst they are believed to be accurate they are not guaranteed and are provided without warranty of any kind. No undertaking is given that the goods/products supplied are fit for its particular purpose. The buyer/user shall assume all risks and liabilities in connection therewith.

RS-M135 ed. 3.3 Jun 2019 TDS012

