

Epoxy Resin Systems Product Data

Room temperature cure laminating system

RS-L135

Hardeners RS-H135 to RS-H138

Applications

- Boats and shipbuilding
- Wind energy turbine blades
- Sports Equipment
- Models

Processing Methods

- Wet layup
- Filament winding
- Pressure moulding
- Pultrusion
- Vacuum bag moulding

TDS016

PRF Composite Materials 3 Upton Road, Poole, Dorset BH17 7AA, England • t: +44 (0) 1202 680022 • f: +44 (0) 1202 680077 • e: enquiries@prfcomposites.com www.prfcomposites.com

Approvals

Germanischer Lloyds approved

Processing

- Between 10°C and 50°C
- Pot life from ca. 25 minutes to ca. 12 hours

Processing methods

- Wet layup
- Filament winding
- Pressure moulding
- Pultrusion

Other features

- Very good physiological properties
- Very good mechanical properties

Introduction

This low viscosity laminating system has been designed for the manufacture of glass, carbon and aramid fibre composite components requiring high static and fatigue strength properties. The resins and hardeners contain neither solvent nor fillers, and are Germanischer Lloyds approved, making the RS-L135 epoxy laminating system particularly suitable for marine applications and the manufacture of wind energy turbine blades.

Careful selection of precursors has ensured this system is low in odour and has very good physiological properties, minimising skin irritation and allergy problems.

For optimum processing flexibility, there is a range of 4 hardeners varying in reactivity, with pot life from 25 minutes to 12 hours. All of the resin/hardener combinations will cure, and are de-mouldable, at room temperature (20 - 25°C). The cured laminate surface will have a high gloss and will be tack-free even in an unfavourable working environment, for instance, high humidity and low temperatures.

The RS-L135 epoxy resin system exhibits good mechanical properties after curing at room temperature. If high temperature strength is not required, finished products made with the selection of hardeners up to RS-H136 may be used without further heat treatment. Post curing (heat treatment) will further enhance the mechanical properties and will also increase the heat resistance.

The mixed viscosity of this resin system ensures a fast, complete impregnation of reinforcement fibres without drainage on vertical surfaces. The addition of fillers such as colloidal silica, microballoons, metal powder etc., is also acceptable to obtain special properties.

Product Specification

Resin	RS-L135
Density at 25°C (g/cm ³)	1.14 - 1.18
Viscosity at 25°C (mPa s)	2400 - 2900
Epoxide equivalent	175 - 185
Colour / Gardner	max. 3

Hardeners	RS-H135	RS-H136	RS-H137	RS-H138
Density at 25°C (g/cm ³)	0.94 - 1.00	0.95 - 1.00	0.94 - 0.98	0.93 - 0.96
Viscosity at 25°c (mPa s)	50 - 150	20 - 100	10 - 50	10 - 50
Amine value (mgKOH/g)	450 - 500	450 - 500	450 - 500	450 - 500
Colour / Gardner	max. 4*	max. 4*	max. 4*	max. 4*

*for colourless hardeners only - standard hardeners are coloured translucent blue

Storage

The resins and hardeners can be stored for a minimum of 12 months in the original, sealed containers at 15 - 25°C. Crystallisation of these materials may occur at temperatures below 15°C and is visible as a clouding or solidification of the liquid within the container. Before processing, the crystallisation must be removed. This can be done, without any degrading the product, by slowly warming the material to approximately 50 - 60°C in a water bath, or oven, and stirring or mixing until the liquid becomes clear.

CAUTION

- Do not heat over a naked flame;
- Before warming, open containers to equalise pressure;
- The use safety equipment (gloves, safety glasses, respirator) is mandatory;
- Work in a well ventilated area.

Processing Data

	Resin	Hardeners	
	RS-L135	RS-H135 → RS-H138	
Average Epoxide Value	0.54 - 0.58	-	
Amine Equivalent	-	60 - 65	
Processing Temperature	10° - 50°C		
Mixed viscosity at 25°C		500 - 1000 mPa s	
Setting Temperature	initial cure at room temperature (20 - 25°C)		
Heat Treatment	15 h a	at 50°C - 10 min at 150°C	

The optimum processing temperature lies in the range between 20 - 25°C. Higher processing temperatures are possible but will shorten pot life. A 10°C temperature increase will halve the pot life. Water, contained in fillers for example, or very high relative humidity will accelerate the reaction of the resin-hardener mixture. However, there is no significant effect to the strength of the cured product as a result of different temperatures and relative humidity levels during processing.

Mixing Ratios

	RS-L135 : RS-H135 ~ RS-H138
Parts by Weight	100 : 35 (+/-2)
Parts by Volume	100: 40 (+/-2)

The specified mixing ratios must be observed; we therefore recommend weighing the resin and hardener precisely using accurate scales. Varying the quantity of hardener will adversely affect the properties of the matrix. The resin and hardener must be mixed thoroughly until they are homogeneously mixed, paying special attention to the walls and the bottom of the mixing container. Do not mix large quantities, especially if highly reactive systems are being used. Heat dissipation from mixing containers is poor, causing the resin-hardener mixture to warm up quicky as a result of the exothermic reaction of the two materials. Temperatures >200°C can be generated causing smoke-intensive burning of the resin-hardener mixture. To avoid this, mix small quantities in large, shallow containers.

Processing Time (Pot Life) 100g / 23°C

	Resin RS-L135			
Hardener	RS-H135	RS-H136	RS-H137	RS-H138
	ca. 25 - 35 min	ca. 90 - 120 mins	ca. 5 - 6 hours	ca. 10 - 12 hours

Temperature Rise

Gel Time - Film Thickness 1mm

	Resin RS-L135			
Temperature	RS-H135	RS-H136	RS-H137	RS-H138
20 - 25°C	ca. 4 - 5	ca. 6 - 8	ca. 10 - 12	ca. 15 - 20
	hours	hours	hours	hours
45 - 50°C	ca. 40 - 50	ca. 1 - 2	ca. 3 - 4	ca. 6 - 7
	min.	hours	hours	hours

Resin Matrix Properties Glass Transition Temperature (Tg)

			RS-L13	5	
		RS-H135	RS-H136	RS-H137	RS-H137
7 days at 20 - 25°C	°C	45 - 50	45 - 50	-	-
24 h. RT + 15 h. 40 - 45°C	°C	55 - 60	50 - 55	50 - 55	50 - 55
24 h. RT + 15 h. 50 - 55°C	°C	60 - 65	60 - 65	60 - 65	60 - 65
24 h. RT + 15 h. 60 - 65°C	°C	70 - 75	70 - 75	70 - 75	70 - 75
24 h. RT + 10 h. 80 - 85°C	°C	85 - 90	85 - 90	85 - 90	85 - 90

DSC - Data according to DIN 51002; System: Mettler TA 4000

Shear Modulus

Cured - Un-reinforced Matrix Properties

CURING : 24h @ 25° + 15h @ 60 - 65°C		RS - L135 & RS-H135 - RS-H138
Density	g/cm³	1.16 - 1.18
Flexural strength	N/mm ²	115 - 120
Tensile strength	N/mm ²	75 - 85
Impact Strength	Nmm/mm ²	35 - 40
Elongation	%	6.5 - 7.5
Compression strength	N/mm ²	110 - 120
Modulus of elasticity	kN/mm²	3.0 - 3.2
24 hours / 23°C	04	0.10 - 0.15
7 days / 23°C	90	0.35 - 0.40
Fatigue under reverse bending stresses acc. DLR Brunswick	10% 90%	> 2 x 10 ⁶ > 2 x 10 ⁶

Representative data in accordance with WL 5.3203 parts 1 & 2 of the German Aviation Materials Manual, part II

Composite Properties Cured - Fibre Reinforced Properties

CURING: 24h @ 25°C + 15h 65°C	@ 60 -	V _f	RS-L135 & RS-H135 / RS-H138
Elementation and NV/2002		GFC	470 - 500
nexula strength	IN/11111	CFC	760 - 800
Toncilo strongth	N/mm^2	GFC	370 - 390
Tensile strength	IN/ITIITI	CFC	520 - 550
Compressive strength N/	N/mm^2	GFC	310 - 350
	N/mm	CFC	320 - 350
Interlaminar chear strength	N/mm^2	GFC	39 - 45
interiaminar snear strengtri	N/IIIII	CFC	49 - 53
Flexural modulus kN/m	1.517 2	GFC	20 - 23
	KIN/IIIII	CFC	43 - 45

GFC - samples: 16 layers, glass fabric, 296g/m² 8H Satin, 4mm thick.

CFC - samples: 8 layers, SM, 3K carbon fabric, 200g/m² plain weave, 2mm thick.

Fibre volume fraction of samples 40% - 45%. Data calculated to fibre volume 43%.

Representative data in accordance with WL 5.3203 parts 1 & 2 of the German Aviation Materials Manual, part II.

Health and Safety - Refer to the full Material Safety Datasheet before use.

Find out what PRF can do for your business

Make an enquiry today at: t: +44 (0) 1202 680022 e: enquiries@prfcomposites.com www.prfcomposites.com

PRF Composite Materials

3 Upton Road Poole Dorset BH17 7AA

Important Notice

All statements, technical information and recommendations offered are only for consideration and evaluation. Whilst they are believed to be accurate they are not guaranteed and are provided without warranty of any kind. No undertaking is given that the goods/products supplied are fit for its particular purpose. The buyer/user shall assume all risks and liabilities in connection therewith.

RS-L135 ed. 3.3 Jul 2019 TDS016

